

Considerations Involving the High Level Application Services for the EIC Project

EPICS Collaboration Meeting James Jamilkowski, Seth Nemesure, Ted D'Ottavio Apr 27th, 2023

Electron-Ion Collider

Outline

- EIC Project Background and Basic Controls Requirements
 - How the EIC Project relates to RHIC
 - Scope of Device Interfaces
 - Data Publishing & Retention
 - Controls Framework Utilization
- Name Lookups
 - Lookup Services
 - Naming Convention(s)
- Time Series Data Logging & Retrieval
 - Logged Data Trends at RHIC
 - Logging Infrastructure Scaling
 - Predicting Retrieval Performance Expectations
- Alarm Notifications
 - Alarm Metadata Handling
 - User Expectations for Alarms

- Command Sequencing Tools
 - Intro to Tape Sequencer Application
 - Use of Tape at RHIC and NSRL Facilities
 - Ideas for Integration and Expansion
- Hybrid Controls Strategies
 - Hybrid Integration Environment Diagram
- Development Environment Strategies
 - Supporting Codebases
- Future Plans
 - Areas Requiring Attention
 - Additional Areas of Interest

EIC Background and Basic Controls Requirements

How the EIC Project Relates to RHIC

	RHIC	EIC
Operating Period	2000 - 2025	~2032 - 2050s
Machines	Blue & Yellow Rings (LEReC, CeC)	HSR, ESR, RCS, Linac, SHC
Spin Physics Program	Part-time (p^)	Most of the time
Collisions	Hadrons, same or mixed species	Hadrons / electrons
Beam Cooling	Add-ons for injection and store	At injection and store
Footprint / Circumference	RHIC tunnel, 2.4 miles	>RHIC tunnel, 2.4 miles
Beam Experiments (Initial)	4	1*
Buildings (incl. Storage, Cooling)	44	62 ^t

^{* &}quot;EPIC" Detector, on-project
t as of April 2023

Scope of Device Interfaces

- RHIC Blue and Yellow Rings, CeC, and LEReC (eCooling systems) currently support ~ 70k Accelerator Device Objects (ADOs)
 - Proprietary controls system interface format with similarities to EPICS
 - Each ADO instance hosts several to >1k of I/O parameters, comparable in function to EPICS Process Variables
 - Additional interfaces via CDEV objects for services (ex. Online modelling)
 - Total control points currently, ~29.5M, though approximately 1/6th or ~5M are parameter values that may be of interest for logging purposes
- EIC is expected to support
 - Hadron Storage Ring (HSR) will roughly be equivalent to RHIC Blue + Yellow Ring, even though segments will not be used due to increases in support equipment
 - We're adding new machines: Electron Storage Ring (ESR), Rapid Cycling Synchrotron (RCS), eLinac, and Strong Hadron Cooling (SHC)
 - Total device types, ~60
 - Total device instances, ~8000

Data Publishing & Retention

RHIC systems

- Time-series data storage for last run, ~247 TB with compression
- Logging system supports large volumes of scalar and array data
- Use of data compression is a requirement
- Includes a tiered data retention policy, though few systems are assigned to a category where data is removed or permanently culled

EIC expectations

- A factor of ~20 increase in raw data volume
- ~5 PB of data stored per year for long-term use
- The system will run for 20 30 years
- We must seriously consider applying strict retention policies
- Concept of capturing "golden" datasets over very limited periods for documentation of optimal running conditions to support long-term comparisons of optimal conditions (ie. Opt-in)
- Snapshot data for normal/off-normal event capture
- AI/ML data processing during the collection process
- Certain datasets will be considered mission critical, and others will not be (especially after a few weeks)
- Streaming data from the Detector is <u>not</u> included

Controls Framework Utilization

- For EIC, we're anticipating using EPICS for...
 - A turnkey eLinac
 - Most systems associated with the new Electron Storage Ring (ESR), Rapid Cycling Synchrotron (RCS), and Strong Hadron Cooling (SHC) machines
 - Our new Front-End "Common Platform" (though an interface for ADO format is also expected to be developed in parallel)
 - For more info, see the presentation on the topic, *Background and Development Status of the EIC Common Platform*, abstract #139 (Tues 4/25 @ 11:40)
 - While re-use of HSR equipment and software interfaces was part of the CDR, the latest plans call for upgrades to the newer HW/SW platform
- Certain legacy systems may still utilize the BNL C-AD ADO interface, though the overall scope has not been determined yet
 - Unlikely to include modelling resources or interfaces to RF, power supplies, instrumentation, etc.

Name Lookups

Lookup Services

- Users deal with only one set of names and one naming convention that covers all EIC machines
- Options to consider
 - RHIC currently relies on the Controls Name Server, which supports ADOs and CDEV objects
 - This infrastructure has scaled well over the last 25 years, partly due to the improvements in server and networking performance
 - Unlike EPICS scheme, all I/O transactions in the ADO/CDEV environment involve interactions with CNS
 - Supports up to two unique names per device as a default, and can be extended using aliases
 - Can we reasonably extend CNS to support EPICS PVs, and how would that potentially scale to fit the project needs?
 - We have started exploring the capabilities of Channel Finder
 - If necessary, can we add a module to incorporate support for ADOs?
 - This would open us up to a wider integration with the tools and infrastructure supported by the EPICS community
 - Are there any scalability / performance concerns given the number of control points anticipated for EIC?

Naming Convention(s)

- ADO and EPICS names tend to follow different standards
 - This has been addressed in the separate workshop presentation, Experiences Adopting EPICS from a New User Perspective for EIC, abstract #140 on Mon 4/24 @ 3:00
- Technical differences limit the acceptable characters for ADO or PV names that might be shared by both frameworks
 - Resolving the impact of any conflicts could be costly in terms of development and testing, if this isn't truly necessary

Time Series Data Logging & Retrieval

Logged Data Trends at RHIC

Logging Infrastructure Scaling

- What logging system design will be required in order to handle the number of PVs and a ~10Hz standard data collection rate?
 - Some datasets will be deemed critical, so some level of redundancy will likely be required at the logging infrastructure level
 - If we give users the flexibility to adjust data collection scope, rates, or retention policies, what would the risk be to maintaining reasonable levels of performance and limiting storage utilization?
- The Archiver service is an attractive option
 - It supports all basic needs: rate and retention policy control, three levels of configuration supporting data age and performance based data management mechanisms
 - Modular components make it easier to add-in updates for new features as needed (ex. ADO data collection support)
 - REST is a well-used API, already familiar to multiple stakeholders

Predicting Data Retrieval Expectations

- Current RHIC performance, ~10 sec maximum response time for recent/limited datasets
 - We should aim to at least maintain a comparable retrieval performance for EIC users
- Archiver capabilities encourage optimization of both storage and retrieval performance for the most recent datasets which we will employ regardless of the implementation
- What kind of performance can we expect for cloud storage, should we elect to use it for older data?

Alarm Notifications

Alarm Metadata Handling

EPICS and ADO alarms have slightly different implementations

EPICS	ADOs
NO_ALARM	ОК
MINOR_ALARM	NOTIFY_DEBUG
MAJOR_ALARM	NOTIFY_INFO
INVALID	NOTIFY_NOTICE
	NOTIFY_WARNING
	NOTIFY_ERROR
	NOTIFY_CRITICAL
	NOTIFY_EMERGENCY

If needed, how might we map the two schemes without complicating functionality?

User Expectations for Alarms

- The existing RHIC ADO alarm scheme does not meet the expectations of Operations
 - Way too many alarms are generated
 - 1.78M separate annunciations In FY21, associated with 22,129 distinct control points
 - The majority of alarm activity was associated with a small portion of "chattering" cases
 - The main problem is that alarm properties need to be enabled at the ADO level (ie. Opt-in), which leads to inertia
 and an overreliance on developer-level management
 - Once alarming is enabled though, users can be given easy access to threshold settings
 - Filtering at the UI level is available, but it's not as practical as the users would like it to be
 - Tools exist to shunt alarms directly to responsible experts via an Opt-in email/texting notification service
 - effort is still required to scrub the Operations-level alarms on a per-ADO class basis
- We need to start with a better philosophy from day one at EIC
 - Dissociate alarms from the ADO / IOC processing level, which seems to be the standard treatment in EPICS
 - Collaborate with stakeholders to review alarm activity concerns on a periodic basis, and apply changes
 - Give stakeholders outside of Controls the tools to contribute to alarm management
 - The existing RHIC AlarmDisplay application lacks a hierarchical display mode, which is both attractive and readily available in the EPICS tools

Command Sequencing Tools

Intro to Tape Sequencer App

- Early in the history of the RHIC project it was identified that machine management required the use of scripted events, that were modular in nature
 - The RHIC operating cycle has multiple phases (injection, ramp, store, dump, refill)
 - Each last from minutes to many hours and require complex sets of changes to be applied in a coordinated fashion at each transition
 - · Plain scripts only get you so far
 - Poor visibility of statuses
 - Versioning concerns
 - Diagnostics require extra work
 - · Modular design isn't necessarily encouraged
- Tape Sequencer was developed to fit the unmet needs of RHIC Operations
 - GUI for loading, running, pausing, stopping sequences of commands, as well as the ability to skip or pause on specific steps
 - Tree-based interface for grouping main sequences and sub-sequences, encouraging modularity
 - Provides run status, active step, error messaging, along with troubleshooting information in a connected log interface
 - Sequences can be edited via a text editor with a simple syntax OR using a GUI
 - Selected commands can be off-loaded to a server
- Demands from the NASA Space Radiation Laboratory program lead to further Tape sequence development related to their Galactic Cosmic Ray operating mode
 - GCR involves exposing samples to a slew of particle species and beam energies that might be encountered in space over a short period of time, requiring a tremendous amount of reconfiguration for elements of the CAD Injectors and Preinjectors at each step
 - Handling this activity through other tools would be virtually impossible

Tape Sequencer Interface

Plans for Tape Development

- Move to an App/Server-backend operating model
 - App provides UI, and commands are processed by the server
 - Better support for multi-user environment
 - Management of active sequences from afar
 - Better handling of dueling sequence activation
 - Could support alternate interfaces, including web
- Consider adopting an existing interpreted language for composing sequences
 - Python is the leading candidate
 - Built-in functionality for math, logic, strings, arrays, other
 - Good tools for editing, building, debugging sequences
 - Can be extended to incorporate task-like functions and classes
- Sequencing will be critical for EIC, since the operating modes for each machine will be complex and intertwined
 - Our hope is that Tape Sequencer can be made available to the EPICS community
 - We're interested in learning about potential use cases that we may not have encountered yet that could be supported

Hybrid Controls Strategies

Hybrid Controls Environment Diagram

Development Environment Strategies

Supporting Codebases

- The expectation is that EIC software/firmware version control will be handled using git
 - RHIC C++, Java, and Python software currently uses a combo of ClearCase and GitLab repos, though plans are being developed to transition fully to the latter
 - Treating applications as projects, and libraries as submodules has been demonstrated to be viable development model
 - Makefiles are still used to manage the build process
 - We're also receiving positive input on GitHub Enterprise, which may help with the CI/CD processes needed for EIC
- RHIC Python applications have been developed on a versioned packaging scheme in order to enforce policies and avoid issues related to Python, libraries, or OS updates
 - Templates available for developers to create new projects
 - This model provides suitable performance when Anaconda is locally installed
 - Are EPICS Python apps given a similar treatment?
- We also need to consider support for alternative languages, including Rust and Julia
- MatLab will need to be supported, perhaps using a HTTP gateway as is supported for RHIC ADOs

Future Plans

Areas Requiring Attention

- SW strategies are needed for the rest of the HLA areas
 - Parameter interface app
 - Synoptic display app
 - Timed Archives / Monitoring Setting Activity
 - Snapshot data handling
 - Inventory control / Assembly & Integration tracking
 - Electronic logs
 - Cross-app integration
- Documentation needs to be developed or extended
 - Prototype details
 - Performance and Interface Requirements
 - Performance testing

Additional Areas of Interest

- Understand the AI/ML needs and possible implementations
 - FEC-level
 - Centralized Service-level
- Data storage and retrieval options
 - Local NAS + Cloud resources?
- Adding Pulse to Pulse Modulation (PPM) support to EPICS in a standardized fashion
 - Other facilties have a proprietary solution, but it might be advantageous to develop a format that is portable enough to be used in most environments where it might be useful
 - See my presentation, Experiences Adopting EPICS from a New User Perspective for EIC, abstract #140
- Developing a Virtual Accelerator framework

Thanks to... Seth Nemesure, Ted D'Ottavio, Greg Marr, Sam Clark, Kevin Brown, Joe Piacentino Jr. (BNL/CAD) Kunal Shroff, Anton Derbenev (BNL/NSLS-II) Kay Kasemir (ORNL) Bob Dalesio (Osprey)

Questions?